Search results
Results from the WOW.Com Content Network
Logical Intuition, or mathematical intuition or rational intuition, is a series of instinctive foresight, know-how, and savviness often associated with the ability to perceive logical or mathematical truth—and the ability to solve mathematical challenges efficiently. [1]
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
As the study of argument is of clear importance to the reasons that we hold things to be true, logic is of essential importance to rationality. Arguments may be logical if they are "conducted or assessed according to strict principles of validity", [1] while they are rational according to the broader requirement that they are based on reason and knowledge.
Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science.Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language.
The expression "statistical proof" may be used technically or colloquially in areas of pure mathematics, such as involving cryptography, chaotic series, and probabilistic number theory or analytic number theory. [23] [24] [25] It is less commonly used to refer to a mathematical proof in the branch of mathematics known as mathematical statistics.
Mathematical logic is the study of formal logic within mathematics.Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory).
An argument is a set of premises together with a conclusion. [60] An inference is the process of reasoning from these premises to the conclusion. [43] But these terms are often used interchangeably in logic. Arguments are correct or incorrect depending on whether their premises support their conclusion.
The Penrose–Lucas argument is a logical argument partially based on a theory developed by mathematician and logician Kurt Gödel. In 1931, he proved that every effectively generated theory capable of proving basic arithmetic either fails to be consistent or fails to be complete .