Search results
Results from the WOW.Com Content Network
In propositional logic, the double negation of a statement states that "it is not the case that the statement is not true". In classical logic, every statement is logically equivalent to its double negation, but this is not true in intuitionistic logic; this can be expressed by the formula A ≡ ~(~A) where the sign ≡ expresses logical equivalence and the sign ~ expresses negation.
Typically it is done by translating formulas to formulas that are classically equivalent but intuitionistically inequivalent. Particular instances of double-negation translations include Glivenko's translation for propositional logic, and the Gödel–Gentzen translation and Kuroda's translation for first-order logic.
Suppose we are given that .Then we have by the law of excluded middle [clarification needed] (i.e. either must be true, or must not be true).. Subsequently, since , can be replaced by in the statement, and thus it follows that (i.e. either must be true, or must not be true).
Double negation elimination occurs in classical logics but not in intuitionistic logic. In the context of a formula in the conjunctive normal form, a literal is pure if the literal's complement does not appear in the formula. In Boolean functions, each separate occurrence of a variable, either in inverse or uncomplemented form, is a literal.
Propositions for which double-negation elimination is possible are also called stable. Intuitionistic logic proves stability only for restricted types of propositions. A formula for which excluded middle holds can be proven stable using the disjunctive syllogism, which is discussed more thoroughly below. The converse does however not hold in ...
Within a system of classical logic, double negation, that is, the negation of the negation of a proposition , is logically equivalent to . Expressed in symbolic terms, . In intuitionistic logic, a proposition implies its double negation, but not conversely. This marks one important difference between classical and intuitionistic negation.
Classical logic is the standard logic of mathematics. Many mathematical theorems rely on classical rules of inference such as disjunctive syllogism and the double negation elimination. The adjective "classical" in logic is not related to the use of the adjective "classical" in physics, which has another meaning.
Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...