Search results
Results from the WOW.Com Content Network
Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. [1] (This convention is used throughout this article.)
Graphs of the inverse hyperbolic functions The hyperbolic functions sinh, cosh, and tanh with respect to a unit hyperbola are analogous to circular functions sin, cos, tan with respect to a unit circle. The argument to the hyperbolic functions is a hyperbolic angle measure.
Arcsine Arccosine.svg - a nice plot of the arcsine and the arccosine function: Image title: Arcsine(arcsin)-function + Arcsine(arccos)-function from Wikimedia Commons plot-range: complete functions plotted with cubic bezier-curves in several intervalls the bezier-controll-points are calculated to give a very accurate result.
Graphs of trigonometric functions. The following table summarizes the properties of the graphs of the six main trigonometric functions: ... arcsine: y = arcsin(x) x ...
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin −1, asin, or, as is used on this page, arcsin. For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
Given numbers and , the naive attempt to compute the mathematical function by the floating-point arithmetic ( ()) is subject to catastrophic cancellation when and are close in magnitude, because the subtraction can expose the rounding errors in the squaring.