Search results
Results from the WOW.Com Content Network
In computer programming, an anonymous function (function literal, expression or block) is a function definition that is not bound to an identifier. Anonymous functions are often arguments being passed to higher-order functions or used for constructing the result of a higher-order function that needs to return a function. [ 1 ]
Anonymous recursion is primarily of use in allowing recursion for anonymous functions, particularly when they form closures or are used as callbacks, to avoid having to bind the name of the function. Anonymous recursion primarily consists of calling "the current function", which results in direct recursion.
The term closure is often used as a synonym for anonymous function, though strictly, an anonymous function is a function literal without a name, while a closure is an instance of a function, a value, whose non-local variables have been bound either to values or to storage locations (depending on the language; see the lexical environment section below).
The above example is an expression that evaluates to a first-class function. The symbol lambda creates an anonymous function, given a list of parameter names, x – just a single argument in this case, and an expression that is evaluated as the body of the function, x**2. Anonymous functions are sometimes called lambda expressions.
A modern, abstract point of view contrasts large function spaces, which are infinite-dimensional and within which most functions are 'anonymous', with special functions picked out by properties such as symmetry, or relationship to harmonic analysis and group representations. See also List of types of functions
An example of such a function is the function that returns 0 for all even integers, and 1 for all odd integers. In lambda calculus , from a computational point of view, applying a fixed-point combinator to an identity function or an idempotent function typically results in non-terminating computation.
Search for the deepest named or anonymous function definition, so that when the lift is applied the function lifted will become a simple equation. This definition recognizes a lambda abstraction with an actual parameter as defining a function. Only lambda abstractions without an application are treated as anonymous functions. lambda-named
Examples of anonymous functions; F. Faxén integral; FL (complexity) FP (complexity) Function application; Function composition; Function problem; Functional ...