Search results
Results from the WOW.Com Content Network
Mulliken charges arise from the Mulliken population analysis [1] [2] and provide a means of estimating partial atomic charges from calculations carried out by the methods of computational chemistry, particularly those based on the linear combination of atomic orbitals molecular orbital method, and are routinely used as variables in linear regression (QSAR [3]) procedures. [4]
One example: Millikan measured the charge on an electron by an experiment with falling oil drops, and got an answer which we now know not to be quite right. It's a little bit off because he had the incorrect value for the viscosity of air. It's interesting to look at the history of measurements of the charge of an electron, after Millikan.
Molecular orbital theory was developed in the years after valence bond theory had been established (1927), primarily through the efforts of Friedrich Hund, Robert Mulliken, John C. Slater, and John Lennard-Jones. [4] MO theory was originally called the Hund-Mulliken theory. [5]
The resulting electron configuration can be described in terms of bond type, parity and occupancy for example dihydrogen 1σ g 2. Alternatively it can be written as a molecular term symbol e.g. 1 Σ g + for dihydrogen. Sometimes, the letter n is used to designate a non-bonding orbital. For a stable bond, the bond order defined as
Mulliken population analysis is based on electron densities in molecules and is a way of dividing the density between atoms to give an estimate of atomic charges. In transmission electron microscopy (TEM) and deep inelastic scattering , as well as other high energy particle experiments, high energy electrons interacts with the electron cloud to ...
In atomic physics, a partial charge (or net atomic charge) is a non-integer charge value when measured in elementary charge units. It is represented by the Greek lowercase delta (𝛿), namely 𝛿− or 𝛿+. Partial charges are created due to the asymmetric distribution of electrons in chemical bonds.
Robert Sanderson Mulliken ForMemRS [1] (June 7, 1896 – October 31, 1986) was an American physical chemist, primarily responsible for the early development of molecular orbital theory, i.e. the elaboration of the molecular orbital method of computing the structure of molecules.
In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred ...