Search results
Results from the WOW.Com Content Network
The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. [1] (This convention is used throughout this article.) This notation arises from the following geometric relationships: [ citation needed ] when measuring in radians, an angle of θ radians will correspond to an arc ...
Graphs of the inverse hyperbolic functions The hyperbolic functions sinh, cosh, and tanh with respect to a unit hyperbola are analogous to circular functions sin, cos, tan with respect to a unit circle. The argument to the hyperbolic functions is a hyperbolic angle measure.
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x -axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).
Csc-1, CSC-1, csc-1, or csc −1 may refer to: . csc x−1 = csc(x)−1 = excsc(x) or excosecant of x, an old trigonometric function; csc −1 y = csc −1 (y), sometimes interpreted as arccsc(y) or arccosecant of y, the compositional inverse of the trigonometric function cosecant (see below for ambiguity)
A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.
For example, the derivative of the sine function is written sin ′ (a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle. All derivatives of circular trigonometric functions can be found from those of sin( x ) and cos( x ) by means of the quotient rule applied to functions such ...
Pages in category "Inverse trigonometric functions" ... Inverse cosecant; Inverse cosine; Inverse cotangent; Inverse covercosine; Inverse coversine; Inverse excosecant;