Search results
Results from the WOW.Com Content Network
Quantitative research using statistical methods starts with the collection of data, based on the hypothesis or theory. Usually a big sample of data is collected – this would require verification, validation and recording before the analysis can take place. Software packages such as SPSS and R are typically used for this purpose. Causal ...
In statistics, a proxy or proxy variable is a variable that is not in itself directly relevant, but that serves in place of an unobservable or immeasurable variable. [1] In order for a variable to be a good proxy, it must have a close correlation, not necessarily linear, with the variable of interest.
The use of descriptive and summary statistics has an extensive history and, indeed, the simple tabulation of populations and of economic data was the first way the topic of statistics appeared. More recently, a collection of summarisation techniques has been formulated under the heading of exploratory data analysis : an example of such a ...
Statistics (from German: Statistik, ... Exploratory data analysis (EDA) is an approach to analyzing data sets to summarize their main characteristics, ...
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
A visual representation of the sampling process. In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population.
Robust statistics are statistics that maintain their properties even if the underlying distributional assumptions are incorrect. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters.
As another example, suppose that the data consists of points (x, y) that we assume are distributed according to a straight line with i.i.d. Gaussian residuals (with zero mean): this leads to the same statistical model as was used in the example with children's heights. The dimension of the statistical model is 3: the intercept of the line, the ...