Search results
Results from the WOW.Com Content Network
ln(r) is the standard natural logarithm of the real number r. Arg(z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg(x + iy) = atan2(y, x). Log(z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...
The dilogarithm along the real axis. In mathematics, the dilogarithm (or Spence's function), denoted as Li 2 (z), is a particular case of the polylogarithm.Two related special functions are referred to as Spence's function, the dilogarithm itself:
r = | z | = √ x 2 + y 2 is the magnitude of z and; φ = arg z = atan2(y, x). φ is the argument of z, i.e., the angle between the x axis and the vector z measured counterclockwise in radians, which is defined up to addition of 2π. Many texts write φ = tan −1 y / x instead of φ = atan2(y, x), but the first equation needs ...
In mathematics, 6-sphere coordinates are a coordinate system for three-dimensional space obtained by inverting the 3D Cartesian coordinates across the unit 2-sphere + + =.They are so named because the loci where one coordinate is constant form spheres tangent to the origin from one of six sides (depending on which coordinate is held constant and whether its value is positive or negative).
The brightness of the color is used to show the modulus of the complex logarithm. The real part of log(z) is the natural logarithm of | z |. Its graph is thus obtained by rotating the graph of ln(x) around the z-axis. In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to ...
Here M(x, y) denotes the arithmetic–geometric mean of x and y. It is obtained by repeatedly calculating the average (x + y)/2 (arithmetic mean) and (geometric mean) of x and y then let those two numbers become the next x and y. The two numbers quickly converge to a common limit which is the value of M(x, y). m is chosen such that
The rows of Pascal's triangle are examples for logarithmically concave sequences. In mathematics, a sequence a = (a 0, a 1, ..., a n) of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if a i 2 ≥ a i−1 a i+1 holds for 0 < i < n.