Search results
Results from the WOW.Com Content Network
Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...
In combinatorial optimization, Lin–Kernighan is one of the best heuristics for solving the symmetric travelling salesman problem. [citation needed] It belongs to the class of local search algorithms, which take a tour (Hamiltonian cycle) as part of the input and attempt to improve it by searching in the neighbourhood of the given tour for one that is shorter, and upon finding one repeats the ...
This problem may also specify the start of the cycle. The Hamiltonian cycle problem is a special case of the travelling salesman problem, obtained by setting the distance between two cities to one if they are adjacent and two otherwise, and verifying that the total distance travelled is equal to n. If so, the route is a Hamiltonian cycle.
For example, a greedy strategy for the travelling salesman problem (which is of high computational complexity) is the following heuristic: "At each step of the journey, visit the nearest unvisited city." This heuristic does not intend to find the best solution, but it terminates in a reasonable number of steps; finding an optimal solution to ...
The traveling salesman problem, in which a solution is a cycle containing all nodes of the graph and the target is to minimize the total length of the cycle The Boolean satisfiability problem , in which a candidate solution is a truth assignment, and the target is to maximize the number of clauses satisfied by the assignment; in this case, the ...
2-opt. In optimization, 2-opt is a simple local search algorithm for solving the traveling salesman problem.The 2-opt algorithm was first proposed by Croes in 1958, [1] although the basic move had already been suggested by Flood. [2]
The Held–Karp algorithm, also called the Bellman–Held–Karp algorithm, is a dynamic programming algorithm proposed in 1962 independently by Bellman [1] and by Held and Karp [2] to solve the traveling salesman problem (TSP), in which the input is a distance matrix between a set of cities, and the goal is to find a minimum-length tour that visits each city exactly once before returning to ...
The Steiner traveling salesman problem (Steiner TSP, or STSP) is an extension of the traveling salesman problem.Given a list of cities, some of which are required, and the lengths of the roads between them, the goal is to find the shortest possible walk that visits each required city and then returns to the origin city. [1]