Ads
related to: unique factorization domains in math chart template printable free for kids easy
Search results
Results from the WOW.Com Content Network
Formally, a unique factorization domain is defined to be an integral domain R in which every non-zero element x of R which is not a unit can be written as a finite product of irreducible elements p i of R: x = p 1 p 2 ⋅⋅⋅ p n with n ≥ 1. and this representation is unique in the following sense: If q 1, ..., q m are irreducible elements ...
Then the factorization problem is reduced to factorize separately the content and the primitive part. Content and primitive part may be generalized to polynomials over the rational numbers, and, more generally, to polynomials over the field of fractions of a unique factorization domain.
Multiplication is defined for ideals, and the rings in which they have unique factorization are called Dedekind domains. There is a version of unique factorization for ordinals, though it requires some additional conditions to ensure uniqueness. Any commutative Möbius monoid satisfies a unique factorization theorem and thus possesses ...
Unlike principal ideal domains (where every ideal is principal), a Bézout domain need not be a unique factorization domain; for instance the ring of entire functions is a non-atomic Bézout domain, and there are many other examples. An integral domain is a Prüfer GCD domain if and only if it is a Bézout domain. [3]
Template: Commutative ring ... Printable version; In other projects ... integrally closed domains ⊃ GCD domains ⊃ unique factorization domains ⊃ principal ideal ...
Weber showed that these fields have odd class number. In 2009, Fukuda and Komatsu showed that the class numbers of these fields have no prime factor less than 10 7, [9] and later improved this bound to 10 9. [10] These fields are the n-th layers of the cyclotomic Z 2-extension of Q.
This difficulty was resolved by Dedekind, who proved that the rings of algebraic integers have unique factorization of ideals: in these rings, every ideal is a product of prime ideals, and this factorization is unique up the order of the factors. The integral domains that have this unique factorization property are now called Dedekind domains ...
Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID.
Ads
related to: unique factorization domains in math chart template printable free for kids easy