Search results
Results from the WOW.Com Content Network
English: Symbol used in a feature control frame to specify a feature's description, tolerance, modifier: Regardless of feature size (RFS) (Not part of the 1994 version. See para. A5, bullet 3. Also para. D3. Also, Figure 3-8.)
Example of true position geometric control defined by basic dimensions and datum features. Geometric dimensioning and tolerancing (GD&T) is a system for defining and communicating engineering tolerances via a symbolic language on engineering drawings and computer-generated 3D models that describes a physical object's nominal geometry and the permissible variation thereof.
For example, if a shaft with a nominal diameter of 10 mm is to have a sliding fit within a hole, the shaft might be specified with a tolerance range from 9.964 to 10 mm (i.e., a zero fundamental deviation, but a lower deviation of 0.036 mm) and the hole might be specified with a tolerance range from 10.04 mm to 10.076 mm (0.04 mm fundamental ...
A material condition in GD&T. Means that a feature of size is at the limit of its size tolerance in the direction that leaves the most material on the part. Thus an internal feature of size (e.g., a hole) at its smallest diameter, or an external feature of size (e.g., a flange) at its biggest thickness. The GD&T symbol for MMC is a circled M.
In a technical drawing, a basic dimension is a theoretically exact dimension, given from a datum to a feature of interest. In Geometric dimensioning and tolerancing, basic dimensions are defined as a numerical value used to describe the theoretically exact size, profile, orientation or location of a feature or datum target. [1]
The modern standard can trace its roots to the military standard MIL-STD-8 published in 1949. [4] It was revised by MIL-STD-8A in 1953, which introduced the concept of modern GD&T "Rule 1". [ 5 ] [ 6 ] Further revisions have continued to add new concepts and address new technology like computer aided design and model-based definition .
What links here; Upload file; Special pages; Printable version; Page information; Get shortened URL
Geometrical Product Specification and Verification (GPS&V) [1] is a set of ISO standards developed by ISO Technical Committee 213. [2] The aim of those standards is to develop a common language to specify macro geometry (size, form, orientation, location) and micro-geometry (surface texture) of products or parts of products so that the language can be used consistently worldwide.