Search results
Results from the WOW.Com Content Network
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
Here R is the gas constant, T is the absolute temperature, n is the concentration, the equilibrium concentration is marked by a superscript "eq", q is the charge and φ is the electric potential. The simple but crucial difference between the Teorell formula and the Onsager laws is the concentration factor in the Teorell expression for the flux.
The concentration of the diffusing species must be low enough that the chemical potential gradient is accurately represented by the concentration gradient (thus, the analogy has limited application to concentrated liquid solutions). When the rate of mass transfer is high or the concentration of the diffusing species is not low, corrections to ...
Diffusion explains the net flux of molecules from a region of higher concentration to one of lower concentration. Once the concentrations are equal the molecules continue to move, but since there is no concentration gradient the process of molecular diffusion has ceased and is instead governed by the process of self-diffusion , originating from ...
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Chemiosmosis is the movement of ions across a semipermeable membrane bound structure, down their electrochemical gradient.An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis.
Brine concentration using forward osmosis may be achieved using a high osmotic pressure draw solution with a means to recover and regenerate it. One such process uses the ammonia-carbon dioxide (NH 3 /CO 2 ) forward osmosis process invented at Yale University [ 13 ] [ 14 ] by Rob McGinnis, who subsequently founded Oasys Water to commercialize ...
According to the hypothesis, the high concentration of organic substances, particularly sugar, inside the phloem at a source such as a leaf creates a diffusion gradient (osmotic gradient) that draws water into the cells from the adjacent xylem. This creates turgor pressure, also called hydrostatic pressure, in the phloem. The hypothesis states ...