Search results
Results from the WOW.Com Content Network
atomic mass number: unitless acceleration: meter per second squared (m/s 2) magnetic flux density also called the magnetic field density or magnetic induction tesla (T), or equivalently, weber per square meter (Wb/m 2) capacitance: farad (F) heat capacity: joule per kelvin (J⋅K −1)
An overview of ranges of mass. To help compare different orders of magnitude, the following lists describe various mass levels between 10 −67 kg and 10 52 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe.
Mass fraction: x: Mass of a substance as a fraction of the total mass kg/kg 1: intensive (Mass) Density (or volume density) ρ: Mass per unit volume kg/m 3: L −3 M: intensive Mean lifetime: τ: Average time for a particle of a substance to decay s T: intensive Molar concentration: C: Amount of substance per unit volume mol⋅m −3: L −3 N ...
For example, the atomic mass constant is exactly known when expressed using the dalton (its value is exactly 1 Da), but the kilogram is not exactly known when using these units, the opposite of when expressing the same quantities using the kilogram.
A branch of physics that studies atoms as isolated systems of electrons and an atomic nucleus. Compare nuclear physics. atomic structure atomic weight (A) The sum total of protons (or electrons) and neutrons within an atom. audio frequency A periodic vibration whose frequency is in the band audible to the average human, the human hearing range.
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.
In theoretical physics, negative mass is a hypothetical type of exotic matter whose mass is of opposite sign to the mass of normal matter, e.g. −1 kg. [1] [2] Such matter would violate one or more energy conditions and exhibit strange properties such as the oppositely oriented acceleration for an applied force orientation.
The notion of dimension of a physical quantity was introduced by Joseph Fourier in 1822. [2] By convention, physical quantities are organized in a dimensional system built upon base quantities, each of which is regarded as having its own dimension.