Search results
Results from the WOW.Com Content Network
The lighter (larger) lanthanides adopt a hexagonal 7-coordinate structure while the heavier/smaller ones adopt a cubic 6-coordinate "C-M 2 O 3" structure. [11] All of the sesquioxides are basic, and absorb water and carbon dioxide from air to form carbonates, hydroxides and hydroxycarbonates. [7] They dissolve in acids to form salts. [8]
The lanthanide (/ ˈ l æ n θ ə n aɪ d /) or lanthanoid (/ ˈ l æ n θ ə n ɔɪ d /) series of chemical elements [a] comprises at least the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. In the periodic table, they fill the 4f orbitals.
Organolanthanide chemistry is the field of chemistry that studies organolanthanides, compounds with a lanthanide-carbon bond. Organolanthanide compounds are different from their organotransition metal analogues in the following ways: They are far more air- and water-sensitive and are often pyrophoric.
The separation of neodymium and praseodymium was a particularly difficult one, and those were formerly thought to be just one element didymium – but that is an alloy of the two. [ citation needed ] There are two series of rare-earth metals , the lanthanides and the actinides, both of whose families all have very similar chemical and physical ...
Atmospheric electricity utilization for the chemical reaction in which water is separated into oxygen and hydrogen. (Image via: Vion, US patent 28793. June 1860.) Electrolyser front with electrical panel in foreground. Electrolysis of water is the decomposition of water (H 2 O) into oxygen (O 2) and hydrogen (H 2): [2] Water electrolysis ship ...
The reduction occurs when CeO 2, or ceria, is exposed to a inert atmosphere at around 1500 °C to 1600 °C, [15] and hydrogen release occurs at 800 °C during hydrolysis when it is subjected to an atmosphere containing water vapor. One advantage of ceria over iron oxide lies in its higher melting point, which allows it to sustain higher ...
A separation process is a method that converts a mixture or a solution of chemical substances into two or more distinct product mixtures, [1] a scientific process of separating two or more substances in order to obtain purity. At least one product mixture from the separation is enriched in one or more of the source mixture's constituents.
One material used for anodic material of nickel–metal hydride batteries is La(Ni 3.6 Mn 0.4 Al 0.3 Co 0.7). Due to high cost to extract the other lanthanides, a mischmetal with more than 50% of lanthanum is used instead of pure lanthanum. The compound is an intermetallic component of the AB