enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Principles of Mathematical Analysis - Wikipedia

    en.wikipedia.org/wiki/Principles_of_Mathematical...

    Rudin's text was the first modern English text on classical real analysis, and its organization of topics has been frequently imitated. [1] In Chapter 1, he constructs the real and complex numbers and outlines their properties. (In the third edition, the Dedekind cut construction is sent to an appendix for pedagogical reasons.)

  3. Walter Rudin - Wikipedia

    en.wikipedia.org/wiki/Walter_Rudin

    Walter Rudin (May 2, 1921 – May 20, 2010 [2]) was an Austrian-American mathematician and professor of mathematics at the University of Wisconsin–Madison. [3]In addition to his contributions to complex and harmonic analysis, Rudin was known for his mathematical analysis textbooks: Principles of Mathematical Analysis, [4] Real and Complex Analysis, [5] and Functional Analysis. [6]

  4. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Real analysis is an area of analysis that studies concepts such as sequences and their limits, continuity, differentiation, integration and sequences of functions. By definition, real analysis focuses on the real numbers, often including positive and negative infinity to form the extended real line.

  5. List of real analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_real_analysis_topics

    Convolution. Cauchy product –is the discrete convolution of two sequences; Farey sequence – the sequence of completely reduced fractions between 0 and 1; Oscillation – is the behaviour of a sequence of real numbers or a real-valued function, which does not converge, but also does not diverge to +∞ or −∞; and is also a quantitative measure for that.

  6. Glossary of real and complex analysis - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_real_and...

    An Introduction to Complex Analysis in Several Variables. Van Nostrand. Rudin, Walter (1976). Principles of Mathematical Analysis. Walter Rudin Student Series in Advanced Mathematics (3rd ed.). McGraw-Hill. ISBN 9780070542358. Rudin, Walter (1986). Real and Complex Analysis (International Series in Pure and Applied Mathematics). McGraw-Hill.

  7. Darboux integral - Wikipedia

    en.wikipedia.org/wiki/Darboux_integral

    In real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function.Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. [1]

  8. Support (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Support_(mathematics)

    In mathematics, the support of a real-valued function is the subset of the function domain of elements that are not mapped to zero. If the domain of f {\displaystyle f} is a topological space , then the support of f {\displaystyle f} is instead defined as the smallest closed set containing all points not mapped to zero.

  9. Princeton Lectures in Analysis - Wikipedia

    en.wikipedia.org/wiki/Princeton_Lectures_in_Analysis

    The Princeton Lectures in Analysis is a series of four mathematics textbooks, each covering a different area of mathematical analysis.They were written by Elias M. Stein and Rami Shakarchi and published by Princeton University Press between 2003 and 2011.