Search results
Results from the WOW.Com Content Network
In meteorology, air currents are concentrated areas of winds. They are mainly due to differences in atmospheric pressure or temperature . They are divided into horizontal and vertical currents; both are present at mesoscale while horizontal ones dominate at synoptic scale .
A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, [1] but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. [2]
Also actiniform. Describing a collection of low-lying, radially structured clouds with distinct shapes (resembling leaves or wheels in satellite imagery), and typically organized in extensive mesoscale fields over marine environments. They are closely related to and sometimes considered a variant of stratocumulus clouds. actinometer A scientific instrument used to measure the heating power of ...
Knowing the wind sampling average is important, as the value of a one-minute sustained wind is typically 14% greater than a ten-minute sustained wind. [16] A short burst of high speed wind is termed a wind gust ; one technical definition of a wind gust is: the maxima that exceed the lowest wind speed measured during a ten-minute time interval ...
The wind stress causes a deformation of the water body whereby wind waves are generated. Also, the wind stress drives ocean currents and is therefore an important driver of the large-scale ocean circulation. [1] The wind stress is affected by the wind speed, the shape of the wind waves and the atmospheric stratification.
The Equatorial Counter Current is an eastward flowing, wind-driven current which extends to depths of 100–150 metres (330–490 ft) in the Atlantic, Indian, and Pacific Oceans. More often called the North Equatorial Countercurrent (NECC) , this current flows west-to-east at about 3-10°N in the Atlantic , Indian Ocean and Pacific basins ...
There are three major wind patterns that lead to Ekman suction or pumping. The first are wind patterns that are parallel to the coastline. [1] Due to the Coriolis effect, surface water moves at a 90° angle to the wind current. If the wind moves in a direction causing the water to be pulled away from the coast then Ekman suction will occur. [1]
The largest ocean current is the Antarctic Circumpolar Current (ACC), a wind-driven current which flows clockwise uninterrupted around Antarctica. The ACC connects all the ocean basins together, and also provides a link between the atmosphere and the deep ocean due to the way water upwells and downwells on either side of it.