Search results
Results from the WOW.Com Content Network
The fluorine–fluorine bond of the difluorine molecule is relatively weak when compared to the bonds of heavier dihalogen molecules. The bond energy is significantly weaker than those of Cl 2 or Br 2 molecules and similar to the easily cleaved oxygen–oxygen bonds of peroxides or nitrogen–nitrogen bonds of hydrazines. [8]
Oxygen difluoride. A common preparative method involves fluorination of sodium hydroxide: 2 F 2 + 2 NaOH → OF 2 + 2 NaF + H 2 O. OF 2 is a colorless gas at room temperature and a yellow liquid below 128 K. Oxygen difluoride has an irritating odor and is poisonous. [3] It reacts quantitatively with aqueous haloacids to give free halogens:
Oxygen difluoride is a chemical compound with the formula OF 2. As predicted by VSEPR theory, the molecule adopts a bent molecular geometry. [citation needed] It is a strong oxidizer and has attracted attention in rocketry for this reason. [5] With a boiling point of −144.75 °C, OF 2 is the most volatile (isolable) triatomic compound. [6]
2, oxygen is assigned the unusual oxidation state of +1. In most of its other compounds, oxygen has an oxidation state of −2. The structure of dioxygen difluoride resembles that of hydrogen peroxide, H 2 O 2, in its large dihedral angle, which approaches 90° and C 2 symmetry. This geometry conforms with the predictions of VSEPR theory.
Difluorides are chemical compounds with two fluorine atoms per molecule (or per formula unit). Metal difluorides are all ionic. Despite being highly ionic, the alkaline earth metal difluorides generally have extremely high lattice stability and are thus insoluble in water. The exception is beryllium difluoride.
Hypofluorous acid, chemical formula H O F, is the only known oxyacid of fluorine and the only known oxoacid in which the main atom gains electrons from oxygen to create a negative oxidation state. The oxidation state of the oxygen in this acid (and in the hypofluorite ion OF − and in its salts called hypofluorites) is 0, while its valence is 2.
Hydrogen compounds are compounds containing the element hydrogen. In these compounds, hydrogen can form in the +1 and -1 oxidation states. Hydrogen can form compounds both ionically and in covalent substances. It is a part of many organic compounds such as hydrocarbons as well as water and other organic substances.
These compounds form by oxidation of alkali metals with larger ionic radii (K, Rb, Cs). For example, potassium superoxide (KO 2) is an orange-yellow solid formed when potassium reacts with oxygen. Hydrogen peroxide (H 2 O 2) can be produced by passing a volume of 96% to 98% hydrogen and 2 to 4% oxygen through an electric discharge. [7]