enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  3. Integer square root - Wikipedia

    en.wikipedia.org/wiki/Integer_square_root

    In number theory, the integer square root (isqrt) of a non-negative integer n is the non-negative integer m which is the greatest integer less than or equal to the square root of n, ⁡ = ⌊ ⌋. For example, isqrt ⁡ ( 27 ) = ⌊ 27 ⌋ = ⌊ 5.19615242270663... ⌋ = 5. {\displaystyle \operatorname {isqrt} (27)=\lfloor {\sqrt {27}}\rfloor ...

  4. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.

  5. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.

  6. Tiling with rectangles - Wikipedia

    en.wikipedia.org/wiki/Tiling_with_rectangles

    The smallest square that can be cut into (m × n) rectangles, such that all m and n are different integers, is the 11 × 11 square, and the tiling uses five rectangles. [1] The smallest rectangle that can be cut into (m × n) rectangles, such that all m and n are different integers, is the 9 × 13 rectangle, and the tiling uses five rectangles ...

  7. Pythagorean tiling - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_tiling

    A Pythagorean tiling Street Musicians at the Door, Jacob Ochtervelt, 1665.As observed by Nelsen [1] the floor tiles in this painting are set in the Pythagorean tiling. A Pythagorean tiling or two squares tessellation is a tiling of a Euclidean plane by squares of two different sizes, in which each square touches four squares of the other size on its four sides.

  8. Dynamic rectangle - Wikipedia

    en.wikipedia.org/wiki/Dynamic_rectangle

    The root-3 rectangle is also called sixton, [6] and its short and longer sides are proportionally equivalent to the side and diameter of a hexagon. [7] Since 2 is the square root of 4, the root-4 rectangle has a proportion 1:2, which means that it is equivalent to two squares side-by-side. [7] The root-5 rectangle is related to the golden ratio ...

  9. Rep-tile - Wikipedia

    en.wikipedia.org/wiki/Rep-tile

    If a polyomino is rectifiable, that is, able to tile a rectangle, then it will also be a rep-tile, because the rectangle will have an integer side length ratio and will thus tile a square. This can be seen in the octominoes, which are created from eight squares. Two copies of some octominoes will tile a square; therefore these octominoes are ...