enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Least-upper-bound property - Wikipedia

    en.wikipedia.org/wiki/Least-upper-bound_property

    A real number x is the least upper bound (or supremum) for S if x is an upper bound for S and x ≤ y for every upper bound y of S. The least-upper-bound property states that any non-empty set of real numbers that has an upper bound must have a least upper bound in real numbers .

  3. Infimum and supremum - Wikipedia

    en.wikipedia.org/wiki/Infimum_and_supremum

    There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...

  4. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    The rational number line Q does not have the least upper bound property. An example is the subset of rational numbers = {<}. This set has an upper bound. However, this set has no least upper bound in Q: the least upper bound as a subset of the reals would be √2, but it does not exist in Q.

  5. Construction of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Construction_of_the_real...

    An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...

  6. Completeness (order theory) - Wikipedia

    en.wikipedia.org/wiki/Completeness_(order_theory)

    The seldom-considered dual notion to a dcpo is the filtered-complete poset. Dcpos with a least element ("pointed dcpos") are one of the possible meanings of the phrase complete partial order (cpo). If every subset that has some upper bound has also a least upper bound, then the respective poset is called bounded complete. The term is used ...

  7. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    If (,) is a partially ordered set, such that each pair of elements in has a meet, then indeed = if and only if , since in the latter case indeed is a lower bound of , and since is the greatest lower bound if and only if it is a lower bound. Thus, the partial order defined by the meet in the universal algebra approach coincides with the original ...

  8. Second-order logic - Wikipedia

    en.wikipedia.org/wiki/Second-order_logic

    For example, if the domain is the set of all real numbers, one can assert in first-order logic the existence of an additive inverse of each real number by writing ∀x ∃y (x + y = 0) but one needs second-order logic to assert the least-upper-bound property for sets of real numbers, which states that every bounded, nonempty set of real numbers ...

  9. Nested intervals - Wikipedia

    en.wikipedia.org/wiki/Nested_intervals

    The construction follows a recursion by starting with any number , that is not an upper bound (e.g. =, where and an arbitrary upper bound of ). Given I n = [ a n , b n ] {\displaystyle I_{n}=[a_{n},b_{n}]} for some n ∈ N {\displaystyle n\in \mathbb {N} } one can compute the midpoint m n := a n + b n 2 {\displaystyle m_{n}:={\frac {a_{n}+b_{n ...