Search results
Results from the WOW.Com Content Network
A gamma-ray laser, or graser, is a hypothetical device that would produce coherent gamma rays, just as an ordinary laser produces coherent rays of visible light. [1] Potential applications for gamma-ray lasers include medical imaging, spacecraft propulsion, and cancer treatment.
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
Plans call for the glass mirrors and 1064 nm lasers to be replaced by even larger 160 kg silicon test masses, cooled to 123 K (a temperature achievable with liquid nitrogen), and a change to a longer laser wavelength in the 1500–2200 nm range at which silicon is transparent. (Many documents assume a wavelength of 1550 nm, but this is not final.)
If a sufficient intensity is reached, a laser beam incident on a substrate (such as fused silica [1]) will cause the substrate to ionize and the resulting plasma will reflect the incoming beam with the qualities of an ordinary mirror. A single plasma mirror can be used only one time, as during the interaction the beam ionizes the substrate and ...
Laser light from gas or crystal lasers is highly collimated because it is formed in an optical cavity between two parallel mirrors which constrain the light to a path perpendicular to the surfaces of the mirrors. [4] In practice, gas lasers can use concave mirrors, flat mirrors, or a combination of both.
Laser cutting is a technology that ... The parallel rays of coherent light from the laser source often fall in the range between 0.06–0.08 inches (1.5–2.0 mm) in ...
Example of a particle collimator. A collimator is a device which narrows a beam of particles or waves. To narrow can mean either to cause the directions of motion to become more aligned in a specific direction (i.e., make collimated light or parallel rays), or to cause the spatial cross section of the beam to become smaller (beam limiting device).
In optics, a Littrow prism, or Littrow mirror, originally part of a Littrow spectrograph (after Otto von Littrow), is a retro-reflecting, dispersing prism arranged in such a way that an incident light beam which enters at the Brewster angle undergoes minimal deviation and hence maximum dispersion.