Search results
Results from the WOW.Com Content Network
An admissible heuristic is used to estimate the cost of reaching the goal state in an informed search algorithm.In order for a heuristic to be admissible to the search problem, the estimated cost must always be lower than or equal to the actual cost of reaching the goal state.
Roughly speaking, their notion of the non-pathological problem is what we now mean by "up to tie-breaking". This result does not hold if A*'s heuristic is admissible but not consistent. In that case, Dechter and Pearl showed there exist admissible A*-like algorithms that can expand arbitrarily fewer nodes than A* on some non-pathological problems.
To use a heuristic for solving a search problem or a knapsack problem, it is necessary to check that the heuristic is admissible. Given a heuristic function (,) meant to approximate the true optimal distance (,) to the goal node in a directed graph containing total nodes or vertices labeled ,,,, "admissible" means roughly that the heuristic ...
The n puzzle is a classical problem for modeling algorithms involving heuristics. Commonly used heuristics for this problem include counting the number of misplaced tiles and finding the sum of the taxicab distances between each block and its position in the goal configuration. [1] Note that both are admissible.
Comparison of an admissible but inconsistent and a consistent heuristic evaluation function. Consistent heuristics are called monotone because the estimated final cost of a partial solution, () = + is monotonically non-decreasing along any path, where () = = (,) is the cost of the best path from start node to .
Like A*, IDA* is guaranteed to find the shortest path leading from the given start node to any goal node in the problem graph, if the heuristic function h is admissible, [1] that is () for all nodes n, where h* is the true cost of the shortest path from n to the nearest goal (the "perfect heuristic"). [2]
Like A*, LPA* uses a heuristic, which is a lower boundary for the cost of the path from a given node to the goal. A heuristic is admissible if it is guaranteed to be non-negative (zero being admissible) and never greater than the cost of the cheapest path to the goal.
For example, a greedy strategy for the travelling salesman problem (which is of high computational complexity) is the following heuristic: "At each step of the journey, visit the nearest unvisited city." This heuristic does not intend to find the best solution, but it terminates in a reasonable number of steps; finding an optimal solution to ...