Search results
Results from the WOW.Com Content Network
Template: Dodecahedron stellations. 2 languages. ... Print/export Download as PDF; Printable version; In other projects Wikidata item; Appearance. move to sidebar hide
The fifth element (i.e. Platonic solid) was the dodecahedron, whose faces are not triangular, and which was taken to represent the shape of the Universe as a whole, possibly because of all the elements it most approximates a sphere, which Timaeus has already noted was the shape into which God had formed the Universe.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space.Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.
A shape with the same exterior appearance as the dodecadodecahedron can be constructed by folding up these nets: 12 pentagrams and 20 rhombic clusters are necessary. . However, this construction replaces the crossing pentagonal faces of the dodecadodecahedron with non-crossing sets of rhombi, so it does not produce the same internal st
A copy of Perspectiva corporum regularium in the Metropolitan Museum of Art, open to one of the pages depicting variations of the dodecahedron. Perspectiva corporum regularium (from Latin: Perspective of the Regular Solids) is a book of perspective drawings of polyhedra by German Renaissance goldsmith Wenzel Jamnitzer, with engravings by Jost Amman, published in 1568.
A regular dodecahedron or pentagonal dodecahedron [notes 1] is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron ...