Search results
Results from the WOW.Com Content Network
Numerical aperture is commonly used in microscopy to describe the acceptance cone of an objective (and hence its light-gathering ability and resolution), and in fiber optics, in which it describes the range of angles within which light that is incident on the fiber will be transmitted along it.
The formula for the magnitude of the solid angle in steradians is =, where is the area (of any shape) on the surface of the sphere and is the radius of the sphere. Solid angles are often used in astronomy, physics, and in particular astrophysics. The solid angle of an object that is very far away is roughly proportional to the ratio of area to ...
The limit on maximum concentration (shown) is an optic with an entrance aperture S, in air (n i = 1) collecting light within a solid angle of angle 2α (its acceptance angle) and sending it to a smaller area receiver Σ immersed in a medium of refractive index n, whose points are illuminated within a solid angle of angle 2β. From the above ...
Acceptance angle may refer to: Half of the angular aperture of an optical system; Acceptance angle (optical fiber), the angle in an optical fiber below which rays are ...
Acceptance angle, half the angular aperture; Field of view This page was last edited on 16 May 2021, at 05:57 (UTC). Text is available under the Creative Commons ...
Acceptance angle. The "acceptance angle" figure illustrates this concept. The concentrator is a lens with a receiver R. The left section of the figure shows a set of parallel rays incident on the concentrator at an angle α < θ to the optical axis. All rays end up on the receiver and, therefore, all light is captured.
Cloth, treated to be hydrophobic, shows a high contact angle. The theoretical description of contact angle arises from the consideration of a thermodynamic equilibrium between the three phases: the liquid phase (L), the solid phase (S), and the gas or vapor phase (G) (which could be a mixture of ambient atmosphere and an equilibrium concentration of the liquid vapor).
The quantitative result of the impact tests the energy needed to fracture a material and can be used to measure the toughness of the material. There is a connection to the yield strength but it cannot be expressed by a standard formula. Also, the strain rate may be studied and analyzed for its effect on fracture.