enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Coin flipping - Wikipedia

    en.wikipedia.org/wiki/Coin_flipping

    Coin flipping, coin tossing, or heads or tails is the practice of throwing a coin in the air and checking which side is showing when it lands, in order to randomly choose between two alternatives. It is a form of sortition which inherently has two possible outcomes.

  3. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  4. Feller's coin-tossing constants - Wikipedia

    en.wikipedia.org/wiki/Feller's_coin-tossing...

    The exact probability p(n,2) can be calculated either by using Fibonacci numbers, p(n,2) = + or by solving a direct recurrence relation leading to the same result. For higher values of k {\displaystyle k} , the constants are related to generalizations of Fibonacci numbers such as the tribonacci and tetranacci numbers.

  5. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin. In theoretical studies, the assumption that a coin is fair is often made by referring to an ideal coin.

  6. Penney's game - Wikipedia

    en.wikipedia.org/wiki/Penney's_game

    Player A selects a sequence of heads and tails (of length 3 or larger), and shows this sequence to player B. Player B then selects another sequence of heads and tails of the same length. Subsequently, a fair coin is tossed until either player A's or player B's sequence appears as a consecutive subsequence of the coin toss outcomes. The player ...

  7. St. Petersburg paradox - Wikipedia

    en.wikipedia.org/wiki/St._Petersburg_paradox

    The St. Petersburg paradox or St. Petersburg lottery [1] is a paradox involving the game of flipping a coin where the expected payoff of the lottery game is infinite but nevertheless seems to be worth only a very small amount to the participants. The St. Petersburg paradox is a situation where a naïve decision criterion that takes only the ...

  8. Law of large numbers - Wikipedia

    en.wikipedia.org/wiki/Law_of_large_numbers

    For example, a fair coin toss is a Bernoulli trial. When a fair coin is flipped once, the theoretical probability that the outcome will be heads is equal to 1 ⁄ 2. Therefore, according to the law of large numbers, the proportion of heads in a "large" number of coin flips "should be" roughly 1 ⁄ 2.

  9. Sleeping Beauty problem - Wikipedia

    en.wikipedia.org/wiki/Sleeping_Beauty_problem

    Imagine tossing a coin, if the coin comes up heads, a green ball is placed into a box; if, instead, the coin comes up tails, two red balls are placed into a box. We repeat this procedure a large number of times until the box is full of balls of both colours. A single ball is then drawn from the box.