Search results
Results from the WOW.Com Content Network
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
One can find the lengths and starting positions of the longest common substrings of and in (+) time with the help of a generalized suffix tree. A faster algorithm can be achieved in the word RAM model of computation if the size σ {\displaystyle \sigma } of the input alphabet is in 2 o ( log ( n + m ) ) {\displaystyle 2^{o\left({\sqrt {\log ...
A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet Σ. Σ may be a human language alphabet, for example, the letters A through Z and other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = {A,C,G,T}) in bioinformatics.
A fuzzy Mediawiki search for "angry emoticon" has as a suggested result "andré emotions" In computer science, approximate string matching (often colloquially referred to as fuzzy string searching) is the technique of finding strings that match a pattern approximately (rather than exactly).
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
A string is a prefix [1] of a string if there exists a string such that =. A proper prefix of a string is not equal to the string itself; [2] some sources [3] in addition restrict a proper prefix to be non-empty. A prefix can be seen as a special case of a substring.
The next occurrence of that character to the left in P is found, and a shift which brings that occurrence in line with the mismatched occurrence in T is proposed. If the mismatched character does not occur to the left in P, a shift is proposed that moves the entirety of P past the point of mismatch.
In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. [1] It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the ...