Search results
Results from the WOW.Com Content Network
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
One can find the lengths and starting positions of the longest common substrings of and in (+) time with the help of a generalized suffix tree. A faster algorithm can be achieved in the word RAM model of computation if the size σ {\displaystyle \sigma } of the input alphabet is in 2 o ( log ( n + m ) ) {\displaystyle 2^{o\left({\sqrt {\log ...
A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet Σ. Σ may be a human language alphabet, for example, the letters A through Z and other applications may use a binary alphabet (Σ = {0,1}) or a DNA alphabet (Σ = {A,C,G,T}) in bioinformatics.
In computer science, the two-way string-matching algorithm is a string-searching algorithm, discovered by Maxime Crochemore and Dominique Perrin in 1991. [1] It takes a pattern of size m, called a “needle”, preprocesses it in linear time O(m), producing information that can then be used to search for the needle in any “haystack” string, taking only linear time O(n) with n being the ...
A fuzzy Mediawiki search for "angry emoticon" has as a suggested result "andré emotions" In computer science, approximate string matching (often colloquially referred to as fuzzy string searching) is the technique of finding strings that match a pattern approximately (rather than exactly).
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
Every three-digit sequence occurs exactly once if one visits every vertex exactly once (a Hamiltonian path). The de Bruijn sequences can be constructed by taking a Hamiltonian path of an n -dimensional de Bruijn graph over k symbols (or equivalently, an Eulerian cycle of an ( n − 1)-dimensional de Bruijn graph).
The reason this test works is that if a repeated string occurs in the plaintext, and the distance between corresponding characters is a multiple of the keyword length, the keyword letters will line up in the same way with both occurrences of the string. For example, consider the plaintext: