Search results
Results from the WOW.Com Content Network
S.M.A.R.T. (or SMART) is an acronym used as a mnemonic device to establish criteria for effective goal-setting and objective development. This framework is commonly applied in various fields, including project management, employee performance management, and personal development.
Goal programming is a branch of multiobjective optimization, which in turn is a branch of multi-criteria decision analysis (MCDA). It can be thought of as an extension or generalisation of linear programming to handle multiple, normally conflicting objective measures.
The optimization of portfolios is an example of multi-objective optimization in economics. Since the 1970s, economists have modeled dynamic decisions over time using control theory. [14] For example, dynamic search models are used to study labor-market behavior. [15] A crucial distinction is between deterministic and stochastic models. [16]
In this example a company should prefer product B's risk and payoffs under realistic risk preference coefficients. Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making (both in daily life and in settings such as business, government and medicine).
In a mathematical programming model, if the objective functions and constraints are represented entirely by linear equations, then the model is regarded as a linear model. If one or more of the objective functions or constraints are represented with a nonlinear equation, then the model is known as a nonlinear model.
Mathematics of Operations Research is a quarterly peer-reviewed scientific journal established in February 1976. It focuses on areas of mathematics relevant to the field of operations research such as continuous optimization , discrete optimization , game theory , machine learning , simulation methodology, and stochastic models .
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
The Riemann hypothesis catastrophe thought experiment provides one example of instrumental convergence. Marvin Minsky, the co-founder of MIT's AI laboratory, suggested that an artificial intelligence designed to solve the Riemann hypothesis might decide to take over all of Earth's resources to build supercomputers to help achieve its goal. [2]