Search results
Results from the WOW.Com Content Network
The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.
In the above equation, the effect of temperature on Gibbs energy (and thus on the equilibrium constant) is ascribed entirely to heat capacity. To evaluate the integrals in this equation, the form of the dependence of heat capacity on temperature needs to be known. If the standard molar heat capacity C o
In biochemistry, steady state refers to the maintenance of constant internal concentrations of molecules and ions in the cells and organs of living systems. [1] Living organisms remain at a dynamic steady state where their internal composition at both cellular and gross levels are relatively constant, but different from equilibrium concentrations. [1]
The truth of this statement for volume is trivial, for particles one might say that the total particle number of each atomic element is conserved. In the case of energy, the statement of the conservation of energy is known as the first law of thermodynamics. A thermodynamic system is in equilibrium when it is no longer changing in time.
Regardless of the approximation applied, multiple independent parameters (k 2 and K 1 in the case of pre-equilibrium; k 1, k −1, and k 2 in the case of steady-state) are required to define the system. While one could imagine constructing multiple equations to describe the unknowns at different concentrations, when the data is obtained from a ...
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the Van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
Equilibrium chemistry is concerned with systems in chemical equilibrium.The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero.
The Hammett equation predicts the equilibrium constant or reaction rate of a reaction from a substituent constant and a reaction type constant. The Edwards equation relates the nucleophilic power to polarisability and basicity. The Marcus equation is an example of a quadratic free-energy relationship (QFER). [citation needed]