Search results
Results from the WOW.Com Content Network
The normal force is actually the sum of the radial and tangential forces. The component of weight force is responsible for the tangential force (when we neglect friction). The centripetal force is due to the change in the direction of velocity. The normal force and weight may also point in the same direction.
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
In an inertial reference frame, an object either remains at rest or continues to move in a straight line at a constant velocity, unless acted upon by a net force. Second law: In an inertial reference frame , the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: F → ...
the kinetic energy of the system is equal to the absolute value of the total energy; the potential energy of the system is equal to twice the total energy; The escape velocity from any distance is √ 2 times the speed in a circular orbit at that distance: the kinetic energy is twice as much, hence the total energy is zero. [citation needed]
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
[note 9] The force required to sustain this acceleration, called the centripetal force, is therefore also directed toward the center of the circle and has magnitude /. Many orbits, such as that of the Moon around the Earth, can be approximated by uniform circular motion.
In order for a charged particle to follow a curved field line, it needs a drift velocity out of the plane of curvature to provide the necessary centripetal force. This velocity is = ‖ where is the radius of curvature pointing outwards, away from the center of the circular arc which best approximates the curve at that point.
Look first at one of the two balls. To travel in a circular path, which is not uniform motion with constant velocity, but circular motion at constant speed, requires a force to act on the ball so as to continuously change the direction of its velocity. This force is directed inward, along the direction of the string, and is called a centripetal ...