Search results
Results from the WOW.Com Content Network
At Mach 0.65, u is 65% of the speed of sound (subsonic), and, at Mach 1.35, u is 35% faster than the speed of sound (supersonic). An F/A-18 Hornet creating a vapor cone at transonic speed just before reaching the speed of sound. The local speed of sound, and hence the Mach number, depends on the temperature of the surrounding gas.
The subsonic speed range is that range of speeds within which, all of the airflow over an aircraft is less than Mach 1. The critical Mach number (Mcrit) is lowest free stream Mach number at which airflow over any part of the aircraft first reaches Mach 1. So the subsonic speed range includes all speeds that are less than Mcrit.
Supersonic speed is the speed of an object that exceeds the speed of sound (Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level , this speed is approximately 343.2 m/s (1,126 ft/s; 768 mph; 667.1 kn; 1,236 km/h).
Mach number is more useful, and most high-speed aircraft are limited to a maximum operating Mach number, also known as M MO. For example, if the M MO is Mach 0.83, then at 9,100 m (30,000 ft) where the speed of sound under standard conditions is 1,093 kilometres per hour (590 kn), the true airspeed at M MO is 906 kilometres per hour (489 kn).
The Pegasus rocket booster separated from its B-52 carrier at 40,000 feet and its solid rocket took the combination to Mach 10 at 110,000 feet. [9] The X-43A split away at Mach 9.8 and the engine was started at Mach 9.65 for 10–12 seconds with thrust approximately equal to drag, and then glided to the Pacific Ocean after 14 minutes. [9]
In February 1949, at White Sands, the rocket reached a speed of 8,290 km/h (5,150 mph), or about Mach 6.7. [2] The vehicle, however, burned on atmospheric re-entry, and only charred remnants were found. In April 1961, Russian Major Yuri Gagarin became the first human to travel at hypersonic speed, during the world's first piloted orbital flight.
Although the project was eventually cancelled, the research was used to construct an uncrewed 30% scale model of the M.52 that went on to achieve a speed of Mach 1.38 in a successful, controlled transonic and supersonic level test flight in October 1948; this was a unique achievement at that time which provided "some validation of the ...
Transonic (or transsonic) flow is air flowing around an object at a speed that generates regions of both subsonic and supersonic airflow around that object. [1] The exact range of speeds depends on the object's critical Mach number, but transonic flow is seen at flight speeds close to the speed of sound (343 m/s at sea level), typically between Mach 0.8 and 1.2.