enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Falling cat problem - Wikipedia

    en.wikipedia.org/wiki/Falling_cat_problem

    A solution of the falling cat problem is a curve in the configuration space that is horizontal with respect to the connection (that is, it is admissible by the physics) with prescribed initial and final configurations. Finding an optimal solution is an example of optimal motion planning. [11] [12]

  3. Kinodynamic planning - Wikipedia

    en.wikipedia.org/wiki/Kinodynamic_planning

    Later they extended the technique to many other cases, for example, to 3D open-chain kinematic robots under full Lagrangian dynamics. [2] [3] More recently, many practical heuristic algorithms based on stochastic optimization and iterative sampling were developed, by a wide range of authors, to address the kinodynamic planning problem. These ...

  4. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    The first solution corresponds to when the projectile is first launched. The second solution is the useful one for determining the range of the projectile. Plugging this value for (t) into the horizontal equation yields = ⁡ ⁡ Applying the trigonometric identity

  5. Brachistochrone curve - Wikipedia

    en.wikipedia.org/wiki/Brachistochrone_curve

    The curve of fastest descent is not a straight or polygonal line (blue) but a cycloid (red).. In physics and mathematics, a brachistochrone curve (from Ancient Greek βράχιστος χρόνος (brákhistos khrónos) 'shortest time'), [1] or curve of fastest descent, is the one lying on the plane between a point A and a lower point B, where B is not directly below A, on which a bead slides ...

  6. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    The horizontal velocity is the blue line, and the corresponding horizontal particle excursions are the red dots. The case for an oscillating far-field flow, with the plate held at rest, can easily be constructed from the previous solution for an oscillating plate by using linear superposition of solutions.

  7. Inverted pendulum - Wikipedia

    en.wikipedia.org/wiki/Inverted_pendulum

    The inverted pendulum is a classic problem in dynamics and control theory and is used as a benchmark for testing control strategies. It is often implemented with the pivot point mounted on a cart that can move horizontally under control of an electronic servo system as shown in the photo; this is called a cart and pole apparatus. [ 1 ]

  8. Tautochrone curve - Wikipedia

    en.wikipedia.org/wiki/Tautochrone_curve

    The simplest solution to the tautochrone problem is to note a direct relation between the angle of an incline and the gravity felt by a particle on the incline. A particle on a 90° vertical incline undergoes full gravitational acceleration g {\displaystyle g} , while a particle on a horizontal plane undergoes zero gravitational acceleration.

  9. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    Torque-free precessions are non-trivial solution for the situation where the torque on the right hand side is zero. When I is not constant in the external reference frame (i.e. the body is moving and its inertia tensor is not constantly diagonal) then I cannot be pulled through the derivative operator acting on L.