Search results
Results from the WOW.Com Content Network
If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, ρ XY is near +1 (or −1). If ρ XY equals +1 or −1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight ...
Examining the density formula, we see that the mass of a beam depends directly on the density. Thus if a beam's cross-sectional dimensions are constrained and weight reduction is the primary goal, performance of the beam will depend on Young's modulus divided by density .
Each iso-density locus — the locus of points in k-dimensional space each of which gives the same particular value of the density — is an ellipse or its higher-dimensional generalization; hence the multivariate normal is a special case of the elliptical distributions.
In linear elasticity, the P-wave modulus, also known as the longitudinal modulus, or the constrained modulus, is one of the elastic moduli available to describe isotropic homogeneous materials. It is defined as the ratio of axial stress to axial strain in a uniaxial strain state. This occurs when expansion in the transverse direction is ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
Density and contour plot of a Bivariate Gaussian Distribution Density and contour plot of two Normal marginals joint with a Gumbel copula. Sklar's theorem, named after Abe Sklar, provides the theoretical foundation for the application of copulas. [5] [6] Sklar's theorem states that every multivariate cumulative distribution function
If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .
where is the initial density and / denotes the derivative of pressure with respect to density. The inverse of the bulk modulus gives a substance's compressibility . Generally the bulk modulus is defined at constant temperature as the isothermal bulk modulus, but can also be defined at constant entropy as the adiabatic bulk modulus.