Search results
Results from the WOW.Com Content Network
Geometric Exercises in Paper Folding is a book on the mathematics of paper folding. It was written by Indian mathematician T. Sundara Row, first published in India in 1893, and later republished in many other editions. Its topics include paper constructions for regular polygons, symmetry, and algebraic curves. According to the historian of ...
Geometric Folding Algorithms: Linkages, Origami, Polyhedra is a monograph on the mathematics and computational geometry of mechanical linkages, paper folding, and polyhedral nets, by Erik Demaine and Joseph O'Rourke. It was published in 2007 by Cambridge University Press (ISBN 978-0-521-85757-4).
Tilings and Patterns is such a book." [8] E. Schulte wrote the entry in zbMATH Open: "I hope that this review conveys my impression that Tilings and Patterns is an excellent book on one of the oldest mathematical disciplines. Most certainly this book will be the 'bible' for this kind of geometry." [9]
Geometric Origami is a book on the mathematics of paper folding, focusing on the ability to simulate and extend classical straightedge and compass constructions using origami. It was written by Austrian mathematician Robert Geretschläger [ de ] and published by Arbelos Publishing (Shipley, UK) in 2008.
In 2021 the book was praised by Palaguta and Starkova in Terra Artis. Art and Design. In their review, they stated that the problem of creating a basis for systematizing patterns on the principles of symmetry was solved in Symmetries of Culture. They give three reasons for continuing to value the book: firstly, despite the passage of time, the ...
For example, mathematical beauty arises in a Math Circle activity on symmetry designed for 2nd and 3rd graders, where students create their own snowflakes by folding a square piece of paper and cutting out designs of their choice along the edges of the folded paper. When the paper is unfolded, a symmetrical design reveals itself.
Unlike most of books in computational geometry focused on 2- and 3-dimensional problems (where most applications of computational geometry are), the book aims to treat its subject in the general multi-dimensional setting. [3] Mark de Berg; Otfried Cheong; Marc van Kreveld; Mark Overmars (2008). Computational Geometry (3rd revised ed.). Springer ...
Covering a flat surface ("the plane") with some pattern of geometric shapes ("tiles"), with no overlaps or gaps, is called a tiling. The most familiar tilings, such as covering a floor with squares meeting edge-to-edge, are examples of periodic tilings. If a square tiling is shifted by the width of a tile, parallel to the sides of the tile, the ...