enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy. Photon energy can be expressed using any energy unit.

  3. Free-space path loss - Wikipedia

    en.wikipedia.org/wiki/Free-space_path_loss

    The free-space path loss is the loss factor in this equation that is due to distance and wavelength, or in other words, the ratio of power transmitted to power received assuming the antennas are isotropic and have no directivity (= =): [5] = ()

  4. Planck relation - Wikipedia

    en.wikipedia.org/wiki/Planck_relation

    The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.

  5. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    The 41.8% point is the wavelength-frequency-neutral peak (i.e. the peak in power per unit change in logarithm of wavelength or frequency). These are the points at which the respective Planck-law functions ⁠ 1 / λ 5 ⁠ , ν 3 and ⁠ ν 2 / λ 2 ⁠ , respectively, divided by exp ( ⁠ hν / k B T ⁠ ) − 1 attain their maxima.

  6. Planck constant - Wikipedia

    en.wikipedia.org/wiki/Planck_constant

    The Planck constant, or Planck's constant, denoted by , [1] is a fundamental physical constant [1] of foundational importance in quantum mechanics: a photon's energy is equal to its frequency multiplied by the Planck constant, and the wavelength of a matter wave equals the Planck constant divided by the associated particle momentum.

  7. Spectral density - Wikipedia

    en.wikipedia.org/wiki/Spectral_density

    For transfer functions (e.g., Bode plot, chirp) the complete frequency response may be graphed in two parts: power versus frequency and phase versus frequency—the phase spectral density, phase spectrum, or spectral phase. Less commonly, the two parts may be the real and imaginary parts of the transfer function.

  8. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The quantity (,) ⁡ is the power radiated by a surface of area A through a solid angle dΩ in the frequency range between ν and ν + dν. The Stefan–Boltzmann law gives the power emitted per unit area of the emitting body, P A = ∫ 0 ∞ I ( ν , T ) d ν ∫ cos ⁡ θ d Ω {\displaystyle {\frac {P}{A}}=\int _{0}^{\infty }I(\nu ,T)\,d\nu ...

  9. Radiant flux - Wikipedia

    en.wikipedia.org/wiki/Radiant_flux

    A flow chart describing the relationship of various physical quantities, including radiant flux and exitance. In radiometry, radiant flux or radiant power is the radiant energy emitted, reflected, transmitted, or received per unit time, and spectral flux or spectral power is the radiant flux per unit frequency or wavelength, depending on whether the spectrum is taken as a function of frequency ...