Search results
Results from the WOW.Com Content Network
Original file (1,443 × 816 pixels, file size: 66 KB, MIME type: application/pdf) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.
Thermodynamic diagrams are diagrams used to represent the thermodynamic states of a material (typically fluid) and the consequences of manipulating this material. For instance, a temperature– entropy diagram ( T–s diagram ) may be used to demonstrate the behavior of a fluid as it is changed by a compressor.
T-S diagram of a station in the North Pacific. In oceanography, temperature-salinity diagrams, sometimes called T-S diagrams, are used to identify water masses.In a T-S diagram, rather than plotting each water property as a separate "profile," with pressure or depth as the vertical coordinate, potential temperature (on the vertical axis) is plotted versus salinity (on the horizontal axis).
In thermodynamics, the saturation vapor curve is the curve separating the two-phase state and the superheated vapor state in the T–s diagram (temperature–entropy diagram). The saturated liquid curve is the curve separating the subcooled liquid state and the two-phase state in the T–s diagram. [1]
A horizontal line in the diagram represents an isenthalpic process. A vertical line in the h–s chart represents an isentropic process. The process 3–4 in a Rankine cycle is isentropic when the steam turbine is said to be an ideal one. So the expansion process in a turbine can be easily calculated using the h–s chart when the process is ...
Get breaking Business News and the latest corporate happenings from AOL. From analysts' forecasts to crude oil updates to everything impacting the stock market, it can all be found here.
From the high-spin (left) side of the d 7 Tanabe–Sugano diagram, the ground state is 4 T 1 (F), and the spin multiplicity is a quartet. The diagram shows that there are three quartet excited states: 4 T 2, 4 A 2, and 4 T 1 (P). From the diagram one can predict that there are three spin-allowed transitions.