Search results
Results from the WOW.Com Content Network
Dimethyldichlorosilane is a tetrahedral organosilicon compound with the formula Si(CH 3) 2 Cl 2. At room temperature it is a colorless liquid that readily reacts with water to form both linear and cyclic Si-O chains. Dimethyldichlorosilane is made on an industrial scale as the principal precursor to dimethylsilicone and polysilane compounds.
Stock and Somieski completed the hydrolysis of dichlorosilane by putting the solution of H 2 SiCl 2 in benzene in brief contact with a large excess of water. [3] [5] A large-scale hydrolysis was done in a mixed ether/alkane solvent system at 0 °C, which gave a mixture of volatile and nonvolatile [H 2 SiO] n.
2 ((CH 3) 3 SiCl + H 2 O → [(CH 3) 3 Si] 2 O + 2 HCl. The analogous reaction of dimethyldichlorosilane gives siloxane polymers or rings: n (CH 3) 2 SiCl 2 + n H 2 O → [(CH 3) 2 SiO] n + 2n HCl. Many compounds containing Si-Cl bonds can be converted to hydrides using lithium aluminium hydride, This kind of conversion was demonstrated for the ...
[1] 2 CH 3 Cl + Si → (CH 3) 4−n SiCl n + other products. While this reaction is the standard in industrial silicone production and is nearly identical to the first direct synthesis of methyltrichlorosilane, the overall process is inefficient with respect to methyltrichlorosilane. [2]
2,2,2-Trichloroethanol is the chemical compound with formula Cl 3 C−CH 2 OH. Its molecule can be described as that of ethanol, with the three hydrogen atoms at position 2 (the methyl group) replaced by chlorine atoms. It is a clear flammable liquid at room temperature, colorless when pure but often with a light yellow color. [1] [2]
This group consists of three methyl groups bonded to a silicon atom [−Si(CH 3) 3], which is in turn bonded to the rest of a molecule. This structural group is characterized by chemical inertness and a large molecular volume , which makes it useful in a number of applications.
The official SI symbols are g/cm 3, g·cm −3, or g cm −3. It is equivalent to the units gram per millilitre (g/mL) and kilogram per litre (kg/L). The density of water is about 1 g/cm 3, since the gram was originally defined as the mass of one cubic centimetre of water at its maximum density at 4 °C (39 °F). [1]
The heat of evaporation is 45.64 kJ·mol −1, the evaporation entropy 123 J·K −1 ·mol −1. [2] The vapor pressure function according to Antoine is obtained as log 10 (P/1 bar) = A − B/(T + C) (P in bar, T in K) with A = 5.44591, B = 1767.766 K and C = −44.888 K in a temperature range from 291 K to 358 K. [ 2 ] Below the melting point ...