Search results
Results from the WOW.Com Content Network
This is called the complementary cumulative distribution function (ccdf) or simply the tail distribution or exceedance, and is defined as ¯ = (>) = (). This has applications in statistical hypothesis testing , for example, because the one-sided p-value is the probability of observing a test statistic at least as extreme as the one observed.
Some sources on CDF consider core damage and core meltdown to be the same thing, and different methods of measurement are used between industries and nations, so the primary value of the CDF number is in managing the risk of core accidents within a system and not necessarily to provide large-scale statistics. [3] [4]
In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known ...
The graph on the left is the cumulative distribution function, which is P(T ≤ t). The graph on the right is P(T > t) = 1 - P(T ≤ t). The graph on the right is the survival function, S(t). The fact that the S(t) = 1 – CDF is the reason that another name for the survival function is the complementary cumulative distribution function.
The empirical distribution function is an estimate of the cumulative distribution function that generated the points in the sample. It converges with probability 1 to that underlying distribution, according to the Glivenko–Cantelli theorem. A number of results exist to quantify the rate of convergence of the empirical distribution function to ...
Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).
For example, the probability that it lives longer than 5 hours, but shorter than (5 hours + 1 nanosecond), is (2 hour −1)×(1 nanosecond) ≈ 6 × 10 −13 (using the unit conversion 3.6 × 10 12 nanoseconds = 1 hour). There is a probability density function f with f(5 hours) = 2 hour −1.
The complement of the standard normal cumulative distribution function, () = (), is often called the Q-function, especially in engineering texts. [ 13 ] [ 14 ] It gives the probability that the value of a standard normal random variable X {\textstyle X} will exceed x {\textstyle x} : P ( X > x ) {\textstyle P(X>x)} .