enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...

  3. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  4. Free induction decay - Wikipedia

    en.wikipedia.org/wiki/Free_induction_decay

    Free induction decay (FID) nuclear magnetic resonance signal seen from a well shimmed sample. In Fourier transform nuclear magnetic resonance spectroscopy, free induction decay (FID) is the observable nuclear magnetic resonance (NMR) signal generated by non-equilibrium nuclear spin magnetization precessing about the magnetic field (conventionally along z).

  5. Relaxation (NMR) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(NMR)

    The energy gap between the spin-up and spin-down states in NMR is minute by atomic emission standards at magnetic fields conventionally used in MRI and NMR spectroscopy. Energy emission in NMR must be induced through a direct interaction of a nucleus with its external environment rather than by spontaneous emission. This interaction may be ...

  6. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  7. Radiofrequency coil - Wikipedia

    en.wikipedia.org/wiki/Radiofrequency_coil

    Thus, the transmitting coil is a good EM near-field generator at radio frequency, but a poor EM radiation transmitter at radio frequency. The receiver coil picks up the oscillations at RF frequencies produced by precession of the magnetic moment of nuclei inside the subject. The signal acquired by the coil is thus an induced emf, and is not the ...

  8. Nuclear Overhauser effect - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Overhauser_effect

    Nuclear Overhauser Effect Spectroscopy (NOESY) is a 2D NMR spectroscopic method used to identify nuclear spins undergoing cross-relaxation and to measure their cross-relaxation rates. Since 1 H dipole-dipole couplings provide the primary means of cross-relaxation for organic molecules in solution, spins undergoing cross-relaxation are those ...

  9. Electron nuclear double resonance - Wikipedia

    en.wikipedia.org/wiki/Electron_nuclear_double...

    ENDOR-induced EPR (EI-EPR) displays ENDOR transitions as a function of the magnetic field. While the magnetic field is swept through the EPR spectrum, the frequency follows the Zeeman frequency of the nucleus. The EI-EPR spectra can be collected in two ways: (1) difference spectra [7] (2) frequency modulated rf field without Zeeman modulation.