Search results
Results from the WOW.Com Content Network
Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, [1] and is mostly applied to nonlinear electrical circuits. [2] [3] [4] It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady-state methods. The name "harmonic balance" is ...
Unit weights, W ii = 1, are often used but, in that case, the expectation value of U is the root mean square of the experimental errors. The minimization may be performed using the Gauss–Newton method. Firstly the objective function is linearised by approximating it as a first-order Taylor series expansion about an initial parameter set, p.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
Kirchhoff's laws, named after Gustav Kirchhoff, may refer to: Kirchhoff's circuit laws in electrical engineering; Kirchhoff's law of thermal radiation; Kirchhoff equations in fluid dynamics; Kirchhoff's three laws of spectroscopy; Kirchhoff's law of thermochemistry; Kirchhoff's theorem about the number of spanning trees in a graph
In fluid dynamics, the Kirchhoff equations, named after Gustav Kirchhoff, describe the motion of a rigid body in an ideal fluid. = + + +, = + +, = (~ +) = ^, = ^ where and are the angular and linear velocity vectors at the point , respectively; ~ is the moment of inertia tensor, is the body's mass; ^ is a unit normal vector to the surface of the body at the point ; is a pressure at this point ...
Newton's method, in its original version, has several caveats: It does not work if the Hessian is not invertible. This is clear from the very definition of Newton's method, which requires taking the inverse of the Hessian. It may not converge at all, but can enter a cycle having more than 1 point. See the Newton's method § Failure analysis.
Newton's law of cooling Newton's law of universal gravitation Newton's laws of motion See also: List of things named after Isaac Newton: Thermodynamics Astrophysics Mechanics: Isaac Newton: Niven's theorem: Mathematics: Ivan Niven: Noether's theorem: Theoretical physics: Emmy Noether: Nyquist–Shannon sampling theorem: Information theory
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.