enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  3. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits. The only powers of 2 with all digits distinct are 2 0 = 1 to 2 15 = 32 768 , 2 20 = 1 048 576 and 2 29 = 536 870 912 .

  4. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    2. Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1. In elementary arithmetic, denotes multiplication, and is read as times; for example, 3 × 2. 2.

  5. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.

  6. Talk:Negative number - Wikipedia

    en.wikipedia.org/wiki/Talk:Negative_number

    My example of {0,1,2,3} above would work well (with addition modulo 4). It's still true that 1<2 without a negative number in sight. Certes 15:44, 3 May 2021 (UTC) And 2 < 1 since 2+3 = 1. As for "negative" numbers, the concept isn't useful in this case since every element can be regarded as both positive and negative.

  7. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    The sequence of powers of ten can also be extended to negative powers. Similar to the positive powers, the negative power of 10 related to a short scale name can be determined based on its Latin name-prefix using the following formula: 10 −[(prefix-number + 1) × 3] Examples: billionth = 10 −[(2 + 1) × 3] = 10 −9

  8. Expression (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Expression_(mathematics)

    The same syntactic expression 1 + 2 × 3 can have different values (mathematically 7, but also 9), depending on the order of operations implied by the context (See also Operations § Calculators). For real numbers , the product a × b × c {\displaystyle a\times b\times c} is unambiguous because ( a × b ) × c = a × ( b × c ) {\displaystyle ...

  9. Negative number - Wikipedia

    en.wikipedia.org/wiki/Negative_number

    Since 2 × (−3) = −6, the product (−2) × (−3) must equal 6. These rules lead to another (equivalent) rule—the sign of any product a × b depends on the sign of a as follows: if a is positive, then the sign of a × b is the same as the sign of b, and; if a is negative, then the sign of a × b is the opposite of the sign of b.