enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Also unlike addition and multiplication, exponentiation is not associative: for example, (2 3) 2 = 8 2 = 64, whereas 2 (3 2) = 2 9 = 512. Without parentheses, the conventional order of operations for serial exponentiation in superscript notation is top-down (or right -associative), not bottom-up [ 27 ] [ 28 ] [ 29 ] (or left -associative).

  3. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits. The only powers of 2 with all digits distinct are 2 0 = 1 to 2 15 = 32 768 , 2 20 = 1 048 576 and 2 29 = 536 870 912 .

  4. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    Analogously, the inverses of tetration are often called the super-root, and the super-logarithm (In fact, all hyperoperations greater than or equal to 3 have analogous inverses); e.g., in the function =, the two inverses are the cube super-root of y and the super-logarithm base y of x.

  5. Seventh power - Wikipedia

    en.wikipedia.org/wiki/Seventh_power

    In arithmetic and algebra, the seventh power of a number n is the result of multiplying seven instances of n together. So: n 7 = n × n × n × n × n × n × n.. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power.

  6. Narcissistic number - Wikipedia

    en.wikipedia.org/wiki/Narcissistic_number

    In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.

  7. Power of 10 - Wikipedia

    en.wikipedia.org/wiki/Power_of_10

    The sequence of powers of ten can also be extended to negative powers. Similar to the positive powers, the negative power of 10 related to a short scale name can be determined based on its Latin name-prefix using the following formula: 10 −[(prefix-number + 1) × 3] Examples: billionth = 10 −[(2 + 1) × 3] = 10 −9

  8. Fourth power - Wikipedia

    en.wikipedia.org/wiki/Fourth_power

    In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube.

  9. Sixth power - Wikipedia

    en.wikipedia.org/wiki/Sixth_power

    64 (2 6) and 729 (3 6) cubelets arranged as cubes ((2 2) 3 and (3 2) 3, respectively) and as squares ((2 3) 2 and (3 3) 2, respectively) In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together.