enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quinary - Wikipedia

    en.wikipedia.org/wiki/Quinary

    Quinary (base 5 or pental [1] [2] [3]) is a numeral system with five as the base.A possible origination of a quinary system is that there are five digits on either hand.. In the quinary place system, five numerals, from 0 to 4, are used to represent any real number.

  3. Duodecimal - Wikipedia

    en.wikipedia.org/wiki/Duodecimal

    The duodecimal system, also known as base twelve or dozenal, is a positional numeral system using twelve as its base.In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten.

  4. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    Another common way of expressing the base is writing it as a decimal subscript after the number that is being represented (this notation is used in this article). 1111011 2 implies that the number 1111011 is a base-2 number, equal to 123 10 (a decimal notation representation), 173 8 and 7B 16 (hexadecimal).

  5. Vigesimal - Wikipedia

    en.wikipedia.org/wiki/Vigesimal

    In a vigesimal place system, twenty individual numerals (or digit symbols) are used, ten more than in the decimal system. One modern method of finding the extra needed symbols is to write ten as the letter A, or A 20, where the 20 means base 20, to write nineteen as J 20, and the numbers between with the corresponding letters of the alphabet.

  6. List of numeral systems - Wikipedia

    en.wikipedia.org/wiki/List_of_numeral_systems

    This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 85 5 is only slightly bigger than 2 32. Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters.

  7. Kaktovik numerals - Wikipedia

    en.wikipedia.org/wiki/Kaktovik_numerals

    30,561 10 3,G81 20 ÷ ÷ ÷ 61 10 31 20 = = = 501 10 151 20 30,561 10 ÷ 61 10 = 501 10 3,G81 20 ÷ 31 20 = 151 20 ÷ = (black) The divisor goes into the first two digits of the dividend one time, for a one in the quotient. (red) fits into the next two digits once (if rotated), so the next digit in the quotient is a rotated one (that is, a five). (blue) The last two digits are matched once for ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Maya numerals - Wikipedia

    en.wikipedia.org/wiki/Maya_numerals

    Presumably, this is because 360 is roughly the number of days in a year. (The Maya had however a quite accurate estimation of 365.2422 days for the solar year at least since the early Classic era.) [5] Subsequent positions use all twenty digits and the place values continue as 18×20×20 = 7,200 and 18×20×20×20 = 144,000, etc.