Search results
Results from the WOW.Com Content Network
For example, some authors use s, indicating species. [ 2 ] x is used here to match the state space notation used in control theory but either notation is acceptable. N {\displaystyle {\bf {N}}} is the stoichiometry matrix which is an m {\displaystyle m} by n {\displaystyle n} matrix of stoichiometry coefficient.
In biochemistry and in biological fluids, at pH = 7, it is thus important to note that the reduction potential of the protons ( H +) into hydrogen gas H 2 is no longer zero as with the standard hydrogen electrode (SHE) at 1 M H + (pH = 0) in classical electrochemistry, but that E red = − 0.414 V {\displaystyle E_{\text{red}}=-0.414\mathrm {V ...
It is possible to build a computer simulation of a linear biochemical pathway. This can be done by building a simple model that describes each intermediate through a differential equation. The differential equations can be written by invoking mass conservation. For example, for the linear pathway:
In biochemistry and pharmacology, the Hill equation refers to two closely related equations that reflect the binding of ligands to macromolecules, as a function of the ligand concentration. A ligand is "a substance that forms a complex with a biomolecule to serve a biological purpose", and a macromolecule is a very large molecule, such as a ...
The solution of the equations, by either analytical or numerical means, describes how the biological system behaves either over time or at equilibrium. There are many different types of equations and the type of behavior that can occur is dependent on both the model and the equations used. The model often makes assumptions about the system.
An example of a Lineweaver–Burk plot of 1/v against 1/a. In biochemistry, the Lineweaver–Burk plot (or double reciprocal plot) is a graphical representation of the Michaelis–Menten equation of enzyme kinetics, described by Hans Lineweaver and Dean Burk in 1934. [1]
The equation describing the rate of change of content in a reservoir is d M d t = Q − S = Q − M τ . {\displaystyle {\frac {dM}{dt}}=Q-S=Q-{\frac {M}{\tau }}.} When two or more reservoirs are connected, the material can be regarded as cycling between the reservoirs, and there can be predictable patterns to the cyclic flow. [ 25 ]
In chemistry and biochemistry, the Henderson–Hasselbalch equation = + ([] []) relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, K a, of acid and the ratio of the concentrations, [] [] of the acid and its conjugate base in an equilibrium.