Search results
Results from the WOW.Com Content Network
A memristor (/ ˈ m ɛ m r ɪ s t ər /; a portmanteau of memory resistor) is a non-linear two-terminal electrical component relating electric charge and magnetic flux linkage.It was described and named in 1971 by Leon Chua, completing a theoretical quartet of fundamental electrical components which also comprises the resistor, capacitor and inductor.
A silver nanowire connectome [10] can be described using graph theory, and have applications ranging from sensors to information storage.Since memristive devices behave as axons in a neuronal network, the theory of memristive networks is the theory of nanoscale electric physical devices whose behavior parallels the one of real neuronal circuits.
In one of the technical reports [3] the memistor was described as follows: . Like the transistor, the memistor is a 3-terminal element. The conductance between two of the terminals is controlled by the time integral of the current in the third, rather than its instantaneous value as in the transistor.
An early example of a MEMS device is the resonant-gate transistor, an adaptation of the MOSFET, developed by Robert A. Wickstrom for Harvey C. Nathanson in 1965. [4] Another early example is the resonistor, an electromechanical monolithic resonator patented by Raymond J. Wilfinger between 1966 and 1971.
Complex systems biology is a field of science that studies the emergence of complexity in functional organisms from the viewpoint of dynamic systems theory. [20] The latter is also often called systems biology and aims to understand the most fundamental aspects of life.
An example of a bio-MEMS device is this automated FISH microchip, which integrates a reagent multiplexer, a cell chamber with a thin-film heater layer, and a peristaltic pump. [ 1 ] Bio-MEMS is an abbreviation for biomedical (or biological) microelectromechanical systems .
Artificial life (ALife or A-Life) is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. [1] The discipline was named by Christopher Langton, an American computer scientist, in 1986. [2]
An imaging system is a system that creates images of various parts of the body depending on what is needed to be analyzed. the system is used to diagnose conditions before they become too serious. Some examples of imaging systems include x-rays, computed tomography (CT scan), magnetic resonance imaging (MRI), and ultrasound.