enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tree (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Tree_(abstract_data_type)

    The height of a node is the length of the longest downward path to a leaf from that node. The height of the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root path). Thus the root node has depth zero, leaf nodes have height zero, and a tree with only a single node (hence both a root and ...

  3. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    A labeled binary tree of size 9 (the number of nodes in the tree) and height 3 (the height of a tree defined as the number of edges or links from the top-most or root node to the farthest leaf node), with a root node whose value is 1. The above tree is unbalanced and not sorted.

  4. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    For infinite trees, simple algorithms often fail this. For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will ...

  5. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  6. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:

  7. Treap - Wikipedia

    en.wikipedia.org/wiki/Treap

    The randomized binary search tree, introduced by Martínez and Roura subsequently to the work of Aragon and Seidel on treaps, [7] stores the same nodes with the same random distribution of tree shape, but maintains different information within the nodes of the tree in order to maintain its randomized structure.

  8. m-ary tree - Wikipedia

    en.wikipedia.org/wiki/M-ary_tree

    For an m-ary tree with height h, the upper bound for the maximum number of leaves is . The height h of an m-ary tree does not include the root node, with a tree containing only a root node having a height of 0. The height of a tree is equal to the maximum depth D of any node in the tree.

  9. Ternary tree - Wikipedia

    en.wikipedia.org/wiki/Ternary_tree

    Depth - Length of the path from the root to the node. The set of all nodes at a given depth is sometimes called a level of the tree. The root node is at depth zero. Height - Length of the path from the root to the deepest node in the tree. A (rooted) tree with only one node (the root) has a height of zero. In the example diagram, the tree has ...