Search results
Results from the WOW.Com Content Network
The reaction is often carried out without a solvent (particularly when a large reagent excess of the alcohol reagent is used) or in a non-polar solvent (e.g. toluene, hexane) that can facilitate Dean–Stark distillation to remove the water byproduct. [4] Typical reaction times vary from 1–10 hours at temperatures of 60–110 °C.
Transesterification is the process of exchanging the organic functional group R″ of an ester with the organic group R' of an alcohol. These reactions are often catalyzed by the addition of an acid or base catalyst. [1] Strong acids catalyze the reaction by donating a proton to the carbonyl group, thus making it a more potent electrophile.
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Esters can be converted to other esters in a process known as transesterification. Transesterification can be either acid- or base-catalyzed, and involves the reaction of an ester with an alcohol. Unfortunately, because the leaving group is also an alcohol, the forward and reverse reactions will often occur at similar rates.
Ester hydrolysis is an organic reaction which hydrolyzes an ester to a carboxylic acid or carboxylate, and an alcohol. It can be performed with acid as catalyst, or with base as reagent. It can be performed with acid as catalyst, or with base as reagent.
The hydroxide anion adds to the carbonyl group of the ester. The immediate product is called an orthoester. Saponification part I. Expulsion of the alkoxide generates a carboxylic acid: Saponification part II. The alkoxide ion is a strong base so the proton is transferred from the carboxylic acid to the alkoxide ion, creating an alcohol:
Ortho esters can be prepared by the Pinner reaction, in which nitriles react with alcohols in the presence of one equivalent of hydrogen chloride. The reaction proceeds by formation of imido ester hydrochloride: RCN + R ′ OH + HCl → [RC(OR ′)=NH 2] + Cl −. Upon standing in the presence of excess alcohol, this intermediate converts to ...
The reaction mechanism of the Mitsunobu reaction is fairly complex. The identity of intermediates and the roles they play has been the subject of debate. Initially, the triphenyl phosphine (2) makes a nucleophilic attack upon diethyl azodicarboxylate (1) producing a betaine intermediate 3, which deprotonates the carboxylic acid (4) to form the ion pair 5.