enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carbon-burning process - Wikipedia

    en.wikipedia.org/wiki/Carbon-burning_process

    The carbon-burning process or carbon fusion is a set of nuclear fusion reactions that take place in the cores of massive stars (at least 4 at birth) that combines carbon into other elements. It requires high temperatures (> 5×10 8 K or 50 keV ) and densities (> 3×10 9 kg/m 3 ).

  3. CNO cycle - Wikipedia

    en.wikipedia.org/wiki/CNO_cycle

    In astrophysics, the carbon–nitrogen–oxygen (CNO) cycle, sometimes called Bethe–Weizsäcker cycle, after Hans Albrecht Bethe and Carl Friedrich von Weizsäcker, is one of the two known sets of fusion reactions by which stars convert hydrogen to helium, the other being the proton–proton chain reaction (p–p cycle), which is more ...

  4. Triple-alpha process - Wikipedia

    en.wikipedia.org/wiki/Triple-alpha_process

    As a side effect of the process, some carbon nuclei fuse with additional helium to produce a stable isotope of oxygen and energy: 12 6 C + 4 2 He → 16 8 O + γ (+7.162 MeV) Nuclear fusion reactions of helium with hydrogen produces lithium-5, which also is highly unstable, and decays back into smaller nuclei with a half-life of 3.7 × 10 −22 s.

  5. Nuclear fusion - Wikipedia

    en.wikipedia.org/wiki/Nuclear_fusion

    Nuclear fusion is the process that powers active or main-sequence stars and other high-magnitude stars, where large amounts of energy are released. A nuclear fusion process that produces atomic nuclei lighter than iron-56 or nickel-62 will generally release energy.

  6. Lawson criterion - Wikipedia

    en.wikipedia.org/wiki/Lawson_criterion

    Fusion is the rate of fusion energy produced by the plasma; Number density is the density in particles per unit volume of the respective fuels (or just one fuel, in some cases) Cross section is a measure of the probability of a fusion event, which is based on the plasma temperature; Energy per reaction is the energy released in each fusion ...

  7. List of unsolved problems in physics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result. The others are experimental, meaning that there is a difficulty in creating an experiment to test a proposed theory or investigate a phenomenon in greater detail.

  8. Supernova nucleosynthesis - Wikipedia

    en.wikipedia.org/wiki/Supernova_nucleosynthesis

    Supernova nucleosynthesis is the nucleosynthesis of chemical elements in supernova explosions.. In sufficiently massive stars, the nucleosynthesis by fusion of lighter elements into heavier ones occurs during sequential hydrostatic burning processes called helium burning, carbon burning, oxygen burning, and silicon burning, in which the byproducts of one nuclear fuel become, after ...

  9. Proton–proton chain - Wikipedia

    en.wikipedia.org/wiki/Proton–proton_chain

    The first step in all the branches is the fusion of two protons into a deuteron. As the protons fuse, one of them undergoes beta plus decay , converting into a neutron by emitting a positron and an electron neutrino [ 7 ] (though a small amount of deuterium nuclei is produced by the "pep" reaction, see below):