enow.com Web Search

  1. Ad

    related to: joint probability distribution meaning

Search results

  1. Results from the WOW.Com Content Network
  2. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    In probability theory, the joint probability distribution is the probability distribution of all possible pairs of outputs of two random variables that are defined on the same probability space. The joint distribution can just as well be considered for any given number of random variables.

  3. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The probability content of the multivariate normal in a quadratic domain defined by () = ′ + ′ + > (where is a matrix, is a vector, and is a scalar), which is relevant for Bayesian classification/decision theory using Gaussian discriminant analysis, is given by the generalized chi-squared distribution. [17] The probability content within ...

  4. Multivariate random variable - Wikipedia

    en.wikipedia.org/wiki/Multivariate_random_variable

    Every random vector gives rise to a probability measure on with the Borel algebra as the underlying sigma-algebra. This measure is also known as the joint probability distribution, the joint distribution, or the multivariate distribution of the random vector.

  5. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    The conditional distribution contrasts with the marginal distribution of a random variable, which is its distribution without reference to the value of the other variable. If the conditional distribution of Y {\displaystyle Y} given X {\displaystyle X} is a continuous distribution , then its probability density function is known as the ...

  6. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    One can compute this directly, without using a probability distribution (distribution-free classifier); one can estimate the probability of a label given an observation, (| =) (discriminative model), and base classification on that; or one can estimate the joint distribution (,) (generative model), from that compute the conditional probability ...

  7. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.

  8. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    A discrete probability distribution is the probability distribution of a random variable that can take on only a countable number of values [15] (almost surely) [16] which means that the probability of any event can be expressed as a (finite or countably infinite) sum: = (=), where is a countable set with () =.

  9. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  1. Ad

    related to: joint probability distribution meaning