enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    The product cA of a number c (also called a scalar in this context) and a matrix A is computed by multiplying every entry of A by c: (), =, This operation is called scalar multiplication, but its result is not named "scalar product" to avoid confusion, since "scalar product" is often used as a synonym for "inner product". For example:

  4. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    This also relates to the handedness of the cross product; the cross product transforms as a pseudovector under parity transformations and so is properly described as a pseudovector. The dot product of two vectors is a scalar but the dot product of a pseudovector and a vector is a pseudoscalar, so the scalar triple product (of vectors) must be ...

  5. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    Real skew-symmetric matrices are normal matrices (they commute with their adjoints) and are thus subject to the spectral theorem, which states that any real skew-symmetric matrix can be diagonalized by a unitary matrix. Since the eigenvalues of a real skew-symmetric matrix are imaginary, it is not possible to diagonalize one by a real matrix.

  6. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    Also, the dot, cross, and dyadic products can all be expressed in matrix form. Dyadic expressions may closely resemble the matrix equivalents. The dot product of a dyadic with a vector gives another vector, and taking the dot product of this result gives a scalar derived from the dyadic.

  7. Block matrix - Wikipedia

    en.wikipedia.org/wiki/Block_matrix

    In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. [1] [2]Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices.

  8. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so (3) to its Lie group SO(3) .

  9. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB. [1]