enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotations and reflections in two dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotations_and_reflections...

    These equations can be proved through straightforward matrix multiplication and application of trigonometric identities, specifically the sum and difference identities. The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group.

  3. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    A reflection about a line or plane that does not go through the origin is not a linear transformation — it is an affine transformation — as a 4×4 affine transformation matrix, it can be expressed as follows (assuming the normal is a unit vector): [′ ′ ′] = [] [] where = for some point on the plane, or equivalently, + + + =.

  4. Reflective programming - Wikipedia

    en.wikipedia.org/wiki/Reflective_programming

    Reflection is often used as part of software testing, such as for the runtime creation/instantiation of mock objects. Reflection is also a key strategy for metaprogramming. In some object-oriented programming languages such as C# and Java, reflection can be used to bypass member accessibility rules. For C#-properties this can be achieved by ...

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  6. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Transformations with reflection are represented by matrices with a determinant of −1. This allows the concept of rotation and reflection to be generalized to higher dimensions. In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix.

  7. Orthogonal matrix - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_matrix

    The special case of the reflection matrix with θ = 90° generates a reflection about the line at 45° given by y = x and therefore exchanges x and y; it is a permutation matrix, with a single 1 in each column and row (and otherwise 0): []. The identity is also a permutation matrix.

  8. In-place matrix transposition - Wikipedia

    en.wikipedia.org/wiki/In-place_matrix_transposition

    For example, with a matrix stored in row-major order, the rows of the matrix are contiguous in memory and the columns are discontiguous. If repeated operations need to be performed on the columns, for example in a fast Fourier transform algorithm (e.g. Frigo & Johnson, 2005), transposing the matrix in memory (to make the columns contiguous) may ...

  9. Transpositions matrix - Wikipedia

    en.wikipedia.org/wiki/Transpositions_matrix

    In example if , and , are two arbitrary selected elements from the same column q of matrix, then, matrix consists one fours of elements (,,,,,), for which are satisfied the equations , =, and , =,. This property, named “Tr-property” is specific to T r {\displaystyle Tr} matrices.